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Overview

•LLRF as a Servo Loop Controller for the Cavity Field
•Present requirements 
•Closed loop performance
•Define IO options
•Error terms inside and outside of the feedback loop 
•Beam based calibration
•Multi-klystron regulation
•Sources of systematic errors
•Choice of IF and ADC sample rate
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WG5 Specs

•The WG5 recommendations call for TESLA-like cavities to be used. 
They would be qualified to operate at a gradient of at least 35 MV/m 
with a Q > 0.8×1010 in CW tests (cavities not meeting these 
requirements would be rejected or reprocessed). Only a small fraction 
of the cavities and cryomodules would be pulsed-power tested. With 
such screening, they expect that a 31.5 MV/m gradient and Q of 
1×1010 would be achieved on average in a linac made with eight-cavity 
cryomodules. This assumes that (1) the rf system would be capable of 
supporting 35 MV/m operation throughout the linac (2) some of the 
poorer performing cavities would be de-Q’ed so the associated 
cryomodule can run at a higher gradient and (3) the cryomodule power 
feeds would include attenuators so the average gradient in each unit 
can be maximized. For a future upgrade, they recommend that 
cavities of the low-loss or reentrant type be used and that they be 
qualified to at least 40 MV/m with Q > 0.8×1010 in order to achieve 36 
MV/m and Q = 1×1010 on average in the linac.
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RF Parameters

Parameter/ System ILC Proton Driver CW
Uncorrelated Amplitude 0.08%, 0.03 deg 0.2%, 0.3 deg 0.01 %, 0.01 deg

Correlated 0.08%, 0.03 deg 0.03%, 0.1 deg 0.01 %, 0.01 deg
Bunch to Bunch Energy       0.05%

Stored Energy W 144J/m 80.5J/m
Gradient 35MV/m 26 MV/m 

Beam Current 9.5mA 8.3mA
Uncorrelated / Klystron 0.08%? 0.1% ?

Klystrons/Linac 286 12
Cavities/Klystron 24 36 to 48

Loaded Q 2.6E6 1.5E6 ?E7



High Power RF
• Baseline
•The 10 MW Multi-Beam Klystrons (MBK’s) being developed by Thales, CPI 

and Toshiba are the baseline choice. The basic tube design appears to be 
robust while alternative approaches have not been fully designed nor are 
currently funded to be developed. At worst, if the MBK’s do not meet 
availability requirements, the commercial, single-beam, 5 MW tube from 
Thales could be used (it has been the ‘work-horse’ for L-band testing at DESY 
and FNAL). Although it is less efficient (42% vs 60-65%), this tube has been in 
service for over 30 years with good availability.

• Alternatives
•The three alternatives discussed were a 10 MW Sheet-Beam Klystron 

(proposed by SLAC to reduce cost), a 5 MW Inductive Output Tube (proposed 
by CPI to improve efficiency) and a 10 MW, 12 beam MBK (proposed by KEK 
to reduce the modulator voltage, and the modulator plus klystron cost).



Buncher 

• Buncher is worst case

• Mixture of 0 and 90 deg beam loading

• Some systematic errors are alright if they 
are equal in both linacs



Limit Drive BW

• Klystron has BW to drive other cavity 
modes

• These modes may not accelerate beam but 
will limit the max cavity field

• 1% power in other modes will reduce field 
by 10%
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AD9510



Fin = 59.09 MHz, Pin = 16.0 dbm
(w/ 50 MHz input filter)



Advantages of IOTs

• Less Group Delay

• More linear at operating point

• Dynamic range overhead

• Much higher effiency 72% vs 50% at 
operating point

• Smaller, lighter, cheaper, longer life


